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ABSTRACT

The lethal volume of a continuous rod warhead {s defined as
that volume in which a target reference point must be located at
burst {f the tzrzet is to be subjected to a lethal cut from the
rod. The letha! volume is a function of the characteristics of
the target, warZeazd, and intercept dynamics,

A continuous rod warhead subjects a target to lethal damage
by ejecting a icop of metal laterally to cut a stractural member
in the target. As the loop is ejected it expands in a circle
until the radivs of breakage is reached.

The target is assumed to be a single, linear, rigid, and
non-rotating structural member. The lethal volume is obtained
for this target by examining the relative motion of the target
and of the rod with respect to the missile carrying the warhead.
Under the assc=ption of constant rod velocity, the lethal volume
is shown to be composed of linear segments joining two identical
right elliptic cones,

Expressioas for the size and probsbility content of the lethal
volume are then obtained for the constant rod velocity case. A
numerical scheze is discussed with which the probability content
of the lethal volume can be evaluated.

Parameter variation studies, which can be performed with the
lethal volume model, are next discussed. As examples, the varia-
tion in the size and probability content of the lethal volume {is
computed for several combinations of the input parameters.

The thesis is closed with two proposed schemes for improving

the model. First, a means of {mproving the target model such thst




it bears a closer resemblance to an airplane is discussed. Final-

ly, a means of accounting for variable rod velocity 1s given.




CHAPTER 1
INTRODUCT1ON
A. LETHAL VOLUMES

The lethal volume oi a warhead is that volume in which a
target reference point must bte located at the time of burst if it
is to be subjected to some lethal effect from the warhead. Thus a
neéessary and sufficient condition for target kill is that the
reference point be located in the lethal volume at the time of burst.
The location of the lethal volume is usually considered relative to
‘the center of the warhe 2, but is occasionally considered relative
to some other point such as a point on the target. Rere, the former
procedure will be followed.

As an elementary example of a lethal volume, cénsider a warhead
wvhich destroys all point targets within a distance R of the center
of the warhead at the time of burst. The lethal volume would then
be a sphere of radius R centered about the warnead. The distance
R is called the lethal reiius of the warhead. The lethal radius is
primarily a function of the warhead and target characteristics but
is also influenced by environmental factors such as atmospheric
density.

The usefulness of the concept of a lethal volume lies largely
in its relation to the kill probability of an operable missile. A
missile is said to be operable unless it fails because of weapon
system mal functions. The kill probability of an operable missile,
P, is defined as the probability that, under a given set of target,
missile, warhead and intercept conditions, an operable missile will

result in a target kill.




If £(x,y,2z,) is the probability density function describing
the location of the target reference point relative to the warhead
at the time of burst, then the kill probavility of an operable
missile is given by, _

P= I f I f(x,y,z)dxdydz ,

v
where V is the lethal volume. 1If,
1 e-1/2<:r’[x2+_v2-rz":l
(2m)72 o

describes the distribution of point targets about the center of

f(xﬂﬁz) -

the warhead for the spherical lethal volume considered earlier,

then

Pe] .[ e (2n) 2 .1/203[x=+y2+za]dxdm .

If P(v < R)denotes the probability that V < R,then P = (M <= R

- 2.
g
-

This is simply P (%: < R?/oéj

where x; has a chi-square distribution with three degrees of

freedom.1

This probability can be found from a table of the
chi-square cumulative distribution.

In practice, it is rarely possible to evaluate P in terms of
tabulated functicons. For this reason, numerical integration of the
integral expression for P must normally be used.

Once the relationship between the lethal volume and the kill
probability has been established, system parameter trsdecffs can

be made. To perform tradeoffs, system parameters are relsted to

the lethal radius of the warhead and the guidance accuracy of the

1y, u. Lilliefors, ™A Hand-Computation Determination of Kill
Probabili*y for Weapons Having Sphiericail lethal Volume'", OPERATIONS

L L N D b




missile. These paramcters can be varied and their effect on kill
probability observed. If the model is sensitive to environmental
factors, their effects on kill probability can also be investigated.
On the other side, studying the effects of hardening the target or
forcing the burst to occur closer to the target is a problem fre-
quently investigated. 1In all cases significant changes in the ki'l
probability are sought for a minimum of cost.

In addition to the kill probability, another measure of warhead
effectiveness which is often used is the size of the lethal volume.
Since the kill probabiiity is obtained by integrating over the
lethal volume, the variation of the size of the lethal volume can
be used as a crude measure of the variation in kill probability.

the size of the lethal volume ac a measure of effectiveness
is useful since it is easier and cheaper to compute than the
probability of kill. For instance, the IBM 7090 computer program
for the lethal volume of a continuous rod warhead based onvtﬁi;
thesis computes the size of the volume at less than one-fourth

the cost of the calculation of kill probability.2

For this reason,
the aize of the lethal volume is preferred as a measure of warhead
effectiveness when the size of the volume adequately reflects the
parameters under study.

B. CONTINUOUS ROD WARHEADS

To form a continuous rod warhead, a single long continuous

metal rod is folded onto the warhea” over a high explosive charge.

2Vitro Laboratories Program R-16, Silver Spring, Maryland,
1964 .
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Upon dectonation the rod expands in a circie normal to and centered

at the missile axis, as shown in figure ]A. The circle of metal
expands as a continuous rod until the circunference of the circle

is approximately equal to the length of the unfolded rod. Then

the rod breaks randomly into.discrete lengths. The radius of the
circle of metsl at the tiée of breakup is called the maximum opening
radius of the rod and will be denoted by Rj.

The speed, thickness, and mass of the rod are such that if the
rod strikes a structural member of an aircraft the member will be
severed. Such damage will usually cause flight failure unless the
member is cut on an extremity such as a wing tip. After the rod
reaches its maxiomm opening radius, the effectiveness of the rod
falls off rapidly and can be ignored in kill probability estimates.
(See figure 13).

The lethal volume of a continuous rod warhead is then defined
as that volume in which the target reference point must be located
at burst if the target is to be lethally cut by the rod before the
3

rod reaches its maximum opening radius Rj.

C. PROBLEM STATEMENT

The major problem addressed in this thesis was to mathematically
describe the set of locations of a target refe;ence point relative
to the warhead at the time of warhead detonation, such that the
subscquent motion of the target and the rod would result in the

rod cutting the target. This set was defined as the lethal volume

of a continuous rod warhead.

3The contents of the section were paraphrased from M.C.Waddel,
Surface-To-Alr Guided Missile Systems, Applied Physics Laboratory
TG 396, March 1961, pp. 37-38.
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Since a necessary and sufficient condition for the target to
be cut by the rod (target kill) is that the reference point be in
the lethal volume at detonation, the probability of kill is the
probability that the reference point is in the lethal volume at
the time of warhead burst. A suhsequent problem, then, was to
obtain the probabiiity content of the lethal volume and the
variation in this probability content with model inputs.

D. IMPORTANCE OF STUDY

To date there has been very little effort devoted to an
analytical description of the lethal volume of a continuous rod
warhead., Nearly all effort in this area has been devoted to
large scale simulations in which specific targets, missiles, and
warheads are "flown" against each other under a given set of
intercept or end game conditions. Using Monte Carlo techniques,

a specific end game i{s run repeatedly until a probability of kill
is obtained. The simulatio; technique has two major disadvantages.
Firat, it is inherently expensive. Secondly, it fails to give the
analyst an adequate "feel" for the relative importance of the
variables under study. Because of the tremendous costs associated
with the simulation approach, tradeoff studies among the inputs
must be limited in scope.

On the other end of the spectrum of the tools that exist for
the analysis of continuous rod warheads, are some elementary
analytical models. Those models are accurate only for the simplest
intercept geometries such as those in which the velocity vectors

of both the target and the missile are along a straight line.%

41bid. pp. 51-53.
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The major disadvantaye of these models is their inscensitivity to
many of the parameters which are known to significantly affect
the kill probability associated with a given end game.

The lethal volume model developed here was designed to
bridge the gap between the simulation technique and simplified
model; i.e., the lethal volume was intended to be sensitive to
many of the variables which the simplified model is not and at
the same time be substantially cheaper to use than the simulation
technique. Because of the large decrease in costs, tradeoff
studies performed with the lethal volume model can be much more
complete than is currently possible with the simulation technique.
For this reason, the lethal volume model is believed to be a
significant new tool for the analysis of continuous rod warhead
problems.

E. ORGANIZATION OF THESIS

Chapter 1II of the thesis contains the derivation of the
lethal volume of a continuous rod wvarhead against a single, linear,
non-rotating, and rigid line segment. The line segment is assumed
to represent the fuselage or wing of an aircraft. The lethal
volune is obtained for this target by examining the relative
motion of the target and the rod with respect to the missile
carrying the warhead. Chapter II is closed with examples of the
shape of the lethal volume as a function of the relative location
of the target and the missile carrying the continuous rod warhead
at burst.

Chspter III contains expresrsions for the size and probability

content of the lethal volume. A numerical scheme for the evalua-
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tion of the expression of the probability content of the lethal
volume is discussed and illustrated.

Chapter IV is devoted to an examination of the uses of the
expressions for the size and probability content of the lethal
volume derived in Chapter I1I1. These uses are concerned with
the variation in the size and probability content with the
characteristics of the warhead, the missile carrying the warhead,
ard the target. A sample study concludes Chapter IV.

Chapter V is devoted to means of improving the warhead and
target models used in the derivation. Particular attention is
given to improving the target model so that is bears a closer

resemblance to an aircraft.




CHAPTER 11
DERIVATION

A. COORDINATE SYSTEMS AND DEFINITIONS

In this section two coordinate systems will be defined. One
system will travel with the missile; therefqre, the rod will remain
in a plane in this coordinate system. Because of this fact the
equations for the lethal volume are greatly simplified in this
coordinate system. A second coordinate system will be defined
such that it has rhe same orientation as the first but will be
stationary. The second system will then be used to establish the
motion between a rigid structural member (target) and the missile.

Let M be the point at the center of the warhead. A right-
handed orthogonal coordinate system with its origin at M will now
be established. First the x-ax!s is chosen such that it lies along
the axis of the missile. The z-axic is then chosen such that it
is perpendicular to the x-axis and such that the x-z axes lie in
the vertical plane, with positive z "above" the origin. The y-axis
is chosen to complete a right-handed system, (see Figure 2). Let
I, J, and k be unit vectors directed along the positive x, y, and
z axes respectively,

Since this coordinate system moves with the missile, the rod
will move in the y-z plane. Furthermore, since the rod expands

in a circle, the path of the rod is described by,

R = (R sin 8)) + (R cos 8)k
wnere,

R is the radius of the circle,

® is the angle between R and k.
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11
Note that R < R;, the maximum opening radius.

Let G be the origin of a second coordinate system, haviny
the same orientation as the above system but fixed relative to
the ground. This coordinate system will be used only to establish
the relative motion between M and the target.

Now consider a rigid linear structural member representing a
major component of an aircraft such as the fuselage or a wing.
Define B and C as the end points of the largest segment on the
member such that a cut of the segment will be lethal to the member.

Define BC as the vector, having length equal to the distance
from B to € and having the direction from B to C. Let the
direction cosines of RC be 31, lz, and 15 . |BC! will be referred

to as the effective length oE the member.
Let A be a point on the member between B and C. The velocity
of A relative to M will now be established. Referring to figure 2,
the vector MA is seen to be given by:
A =0 - OM.
Differentiating both sides with respect to time, t, gives
dMA=dGR -dH .

d MA dt dt dt
Defining -3 2s the velocity of A relative to M, denoted

VA/“ » gives

Y VR T
Under the assumption that there is no rotation of the member
during the period of interest, the velocity of all points of the

member will be equal to AM This assumption is adequate

because of the extremely short time between warhead burst and the
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time the rod reaches its maximum opening radius B'L Dennting this

common velocity by VA glves

VRV (1)

Let the direction cosines of V /G be m, m, and maand the

A

absolute value of V be | V - ' . In addition,let the direction
A/G A/G

cosines of V- 5 be n1 , na, and na and let the absolute value of

v;/abel H/G . Then

H/G | 1/(:'1'l * }1"7123+IM/G'113
and

A/G':‘ /Ghn i+|V/G|m;)+| /Glml'c' 5

Substituting these values into equation (1)

ﬁ-Gv;/‘glm %75 ! )“(v;/;lm Imlnz)‘j
VAL

+ (77 1n -1 G5 In ) E
or e : -
V=V T+V J+V Kk
b 4 3
where,
‘J"--IVA_/(;lml-W'ﬁfn1 (2)
Y, Vg lm -1 Tyl ()
Vo=V tm =1V tn (L)

B. PARAMETRIC EQUATION OF THE LETHAL VOLUME

All positions, relative to M, at which the point B can be
located at burst and the member still be cut by the rod between
B and C will now be determined. The location of the point B will

be defined such that any point of the member will be cut by the rod
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at a radius R and angle 8 . The sclection of the point B as the
target reference point is only for convenience since any target
reference point would suffice.

The time for the rod totravel a distance R is given by
t - R/vR
where,
VR

an arbitrary point on the member, the distance, with respect to M,

is the average velocity of rod to the distance R. If A is

" that A travels during this time is | | where

A

d’--th .

Referring to figure 3, R is seen to be given by
E-B(A)+3I+ﬁ

where, E(A) i3 the set of coordinates of the reference point B (at

the time of burst) such that the subsequent motion of the member

and the rod will result in the rod being cut at the point A.

Since BA lies along EE, BA uhﬁ'(_:', where A -g
B
and 6<X < 1. Substituting and solving for B(A) gives
B(A) = - T - AFC ()
when A = 0,
B(B) =R - 3;

and when X =1,

Bc)=R-T - .

Therefore,
B(C) = B(B) - BC (6)
B(A) = B(B) - ARC

and B(A) = B(B) - MB(B) - B(¢C)] (7)
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Two important observations concerning the volume generated by
E(A) can be made from equations {3) and (7). Equation (7) shows
that the volume gencrated by Eké} is composed of linear segments
joining the surfaces generated b E(B) and E(C). Equation (6) shows
that the surface generated by B(C) is identical to that generated
by E{B) but is displaced by the vector -BC. Hence, describing the
lethal volume generated by B(A) is essentially reduced to describing
the surface enerated by E(B); i.e., the surface associated with cuts
of the point B.

Substituting for R,d. , and BC in equation (7) gives,

d
A
E(A)-[@;-)V! -ll-B'C-if-l}i_-v[EcosB-&(%gV, SME L

+[R sin 8 +@—B>V‘ - )."B'ﬁlls:tﬁ-[x“ Yy ZA] . (9)

Equation (8) is the parametric equation of the lethal voiume.
When evaluated for all R, 8, andAsuch that 0 <R < H.L, 0<86 <om
and O _'E lf 1 every point at shich the reference B can be
located at burst and the target lLe cut between B and C is generated.
The volume generated by EIA) will be denoted V,
D. ELIMINATION OF PARAMETERS

Although equation (8) can be used to generate the lethal
volume V, the elimination of the parameters R end § will lead to
a more efficient computation. Since no equation exists for reliably
expressing VR as a function of R, a completely closed form solution
18 impossible to obtain. However, a closed form solution can be

obtained for any given R. 1In adZition, urder the assumption that

VR is constant, a closed form sclution for the entire volume will




be obtained.
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As pointed out in the preceding section, the problem of

describing V is essentially equivalent to that of describing

the surface generated by E(B). To find EkB), A =0 is substituted

in equation (8) giving,

B(8) = ["B’ Vs za]‘@l;)v. I [R pon § ('rf"

NIEITRC.

Xg * (§:> v
annmse+@9v
zB-nRsinB-rG}E—‘)V'

or

Eliminating ® from equations(QB) and (9C) gives,
2V
2

AR AR w*waﬁ-—(f

But from equation (9A) is obtained,
vR
R= V: Xg ’ if V; ¥ 0 .
Substituting gives,

(24)

(9B)

(9%)

{104)
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or in matrix form

A v _v'.
R AR A
v T
B(B) |- ¢* 1 0 [B(B)] ‘10B)
v
- 0 1
where,
H« (v: + vf - v’;{)/v’ (10C)

B(B)= {Xps ¥pr Z)
[B(B)]T is the transpose of B(B)
If M denotes the matrix of coefficients in equation (10B),
then

s(B) = [B(B)] M [B(B)]T (11)

Where S(B) = 0 is the equation of the surface generated by E(B);
i.e., the equation whose locus is the surface associated with cuts
of the point B.
C. REDUCTION 7O NORMAL FORM
- In this section the normal form of S(B) will be obtained.
First, the special case when both V,and V;are zero, will be treated.
Then the canonical form for the case when V'and V,are not both zero
will be obtained.
If an orthogonal matrix Q can be found such that,
@Q" = D (12)

where D is a diagonal matrix, then the substitution

B(B) = B(B) Q (124)
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can be made in equation (11}, giving,
s(B) = B'(B)M(B’(R)Q)T= B'(8)axT(8"(B)]" = 3(B)Dl2’(2) T
This will then be the required normal form of S(B) in terms of

¢ -
F'(B) - [xB, yé, zé]. The relationship between B(B) and E'(B) can
be obtained from equation (12A}.

First, consider the special case when both V’and V'are zero.

Then — —
) !’E o o0
v
M= 0 1 0
| 0 0 1
and
' s (%)
b
From equation (9C) the maximum value of z; is seen to be R?.
Dividing through by R?gives
2 2 2
.73 %
= e 5 - =0 (13)
K R CRV'
)

as normalized equation of the surface. For a given K, VR is a
constant and the surface associated with ~iats of the point B is
seen to be a right circulaE cone, If Vais assumed to be constant
for.all R, then the cone for R = RLwill contain the cones for all

other values of R. Under this assumption, equaticn (13) takes the

form, 2 3 3
f-§+z§--—:§—-0 . (lh)
R AV
+)

R

e —m—— =~
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Next consider the case when neither V nor V is zero. Following

Yy 4

the characteristic root - characteristic vector scheme for deriving

3, the characteristic roots were found to be,

" Ve
/(H +1)° + L = (154)
p = H+1 + I
1 2 _ ) '
[ e R
(H+1) +« 4 — (15B)
H+1 -\/ V‘: <
Pa = > 0 ,
and pa =] (15¢)
The characteristic vectors were found to be
- v v
— ], 1
4 =L 1 v T v'—] ) (15D)
X 1
- v v
— 1 1 :
q -l 35 'ﬁ" ’ TP V'] ’ (15E)
X 2 X
= oy
and  q = [0’ 1, . (15F)

Therefore -
| VAR
Q= |%/1%1

5,14, 1]
Substituting Q in equation (12) gives

—

Dl 00
D= 0] 9. 4]
0 0 1

Hence S(B) has form
2
S(B) = 2§ + cx]‘g2 -d y"

\mere,quDTandd-J-'-q .
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The tranaformation equations are given by

B'(B) = B(B)Q"
s k')
= 1 %p. V:'G:-%ﬁ'; YB*G%)Q.%‘
- v
yé-_x3+f(ﬁ:)y3+(;§>(%%>zd/|§:| (163)

S
*s " _VB'V"ZB]/'Q' . (16¢)

Substituting from equations (9B) and (9C) into (16C) gives

p v Vv
ZB'(R costTf-Rsin 9) -'-~v-;—z- . (17)

s
for a given R, the maximum value of Zg is now desired in order to

or

Yag) /1T (168)

establish the general form of S(B). Différentiating with respect
to 8 and equating to zero gives,

=¥
tanez-vL
b

Substituting into equation_(17) yields
: R RRV

’ P SO S
(ZB)Hax (V: + V:) (V: + V:)

Therefore the normalized form of the surface associated with cuts

of the point B is

) g »

’l I's
B, X3
? ' 3
R R R
3 Q@
Note that when either V or V' but not both is zero the vector 'E;
Y

=0 . (18)

must be modified. When V; is zero, then

<

’
5. = y -
and when V; = 0, B B (194)

’

then zj = X, (198B)
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In both cascs (zé JMax apain equals R. lHowcver, equaticn (18) scill
holds since the formulas for ¢ and d remain unchangec. If both Vy
and V, are zero the characteristic values change and eczation (13)
must be used. Again, the surface associated with cuts oI the
point B is seen'to be a right cone or more specifically In this
case a right elliptic cone. As before, if Vg is assu=z=I to be
constant, then the cone for R = Ry, will contain all othe¢r cones
and equation (18) becomes 2 2 3
s N W
AN GYNG)
¢ d

A definitive statement abrut the lethal volume V cza now be

made. Earlier the lethal volume was shown to be composzd of all
linear segments of length | BC| joining two identical su:-faces
generated by Efﬁ) and E(C) where | EE! was the effective length of
the member. These facts in conjunction with the foregoing state-
ments about the surface generated by EIB), gives the foilowing
theorem:
Under the assumption of a constant non-zeroc rod

velocity (VR¥O) and a non-zero closing velocity

projected on the missile axis (V;f 0), the lethal

volume of a continuous rod warhead directed against

e linear, rigid, and non-rotating structural mecber,

is composed of linear segments connecting the surfaces

of two right elliptic cones., Furthermore, these cones

are identical in size and orientation. They are displaced

from each other by a vector whose length is equal to

the effective length of the member and whose direction is
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given by the orientation of the member with respect to

the axis of the missile carrying the warhead.
EXAMPLES

Before proceeding further with the derivation three simple
examples will be given. The conditions associated with the examples
will be referred to as ead game conditions. End Game I is the
simple case when the velocity vector of the target and the target
velocity vector of the —issile both lie along the same line. 1In
End Game II the member is inclined at 45° to the axis of the
missile., 1In End Game III the member is inclined at 90° to the
axis of the missile. Table I defines the three end games in detail.
The examples were treated parametrically except when complexity
dictated otherwise.

TABLE I. Definition of End Games

Model Inputa End Game I End Game II ) End Game III. ..
Ry, R Ry Ry
Vo Ve (constant) LoO fps Loo fps
21’ 4,5 La ‘1’ o2 % -% ’ 0’-:%_ 0, 0, <
| BC | |8 ! 186 | | 8¢ |
R,m,m -1, 0, O %—’ 0,-"-%_ 0, 0, 1
n,n,n 1, 0, 0 1, 0, 0 1, 0, 0
‘VA/G‘ |V:7E' 300 fps 300 fps
I'\T;,!';al I?';/Ei 200 fps 200 fps

“These terms are defined on pp.l11-13
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In End Game I both \'y and V, are zero and equation (1l4) holds,

consequently, the surface associated with cuts of the point B is a
v |
v, 18y

R

right circular cone of height

Figure 4 shows the lethal volume for this end game.

In End Game II;the member is inclined at 45° to the axis of
the missile., The velocity vector of the member and the velocity
vector of the missile are aligned with the member and the axis of
the missile, respectively. From equations (2), (3), and (4) are
obtained,

LA -l12 fps, V' =0, and V = -212 fps.

From equations (10C), (15A4), and (15B) are obtained,
H = -0.678’ p‘ - 1.15 a-nd Da = -0.82 ®
Therefore S(ﬁ) has the form,

03 l. ’3
S(B) = 8, Xg I8

(0ush &))" (1.1 Rp)?
The translation equations (16A), (16B), and (194) give,

x;-[xB-B.sz]/'ql J
Y;-[xa+0.283231/!7§| ,

£ =y .
B B
Uaing these axes the lethal volume was sketched in figure 5.

In End Game III the member is included at S0° to the axis of
the missile. The velocity vectors at both the member and the

misaile are aligned with their respective axes. In this case,

V; = 200 fps, V; = 0, and V; = =300 fps .
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In this case, H = =1.75, 91 = 1,66, and o, = -2.41e Hence, S(B) has

the form,
s‘a x;a Y’a
S(B) = 3 + B “é" =D .

By (776 R " (6l Ry
The translation equations for this end game are,
X (xp - 2B 75y /g
Yo~ [%p * O 25) /| Ty
and zg =¥ .
Using these axes the lethal volume was sketched in figure 6.
Notice the marked difference in the characteristics of the
lethal volume in End Game III1 as compared to either End Game I or
End Game II., Figure 7 shows the transition in five stages. The
figures show End Game I for various values of !iﬂ cos 0.
Pirst consider the cylinder formed by the lines joining the
v bases of the two cones in Case 1. As the angle @ increases, the
apex of the cone contained in the cylinder (Case 2) approaches the
side of the cylinder uncil the angle 9 equals the semi-cone angle o
(Case 3). As B becomes greater than o the cone breaks through the
side of the cylinder (Case 4). At 0 = 90° the cone becomes complete-
ly outside the cylinder. (Case 5).
As O becomes still larger the cone originally outside the
cylinder starts to recede into the cylinder. At 8= 180G° the
volume is exactly as it appears in Case 1, except the cone outside
the cylinder at9= 0° {s now inside the cylinder and vice-versa.
The condivion for a cone to be completely contained in the
cylinder when V and V are both zero, is

7 3
oa>9 N

=
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Hence
-1 -1 o
tan Q R_) > cos (l 3—6"‘ Ec'i D (204)
. R
r
or — v
|BC » 4],y 5 1! (20B)

} BCI 1= ./FR + v
is required condition.

Following a similar line of reasoning gives the condition

when either V’or V' is not zero as

EC a:' ]
————e > s (20C)
Igm)~ T ed

__— P e N S T Y it




CHAPTER 111
MEASURES CF EFFECTIVENESS

A. INTRODUCTION

In this section expressions for the two measures of
effectiveness disrussed in the introduction, the size and
probability content of the level volume, will be developed.
The scope of this chapter will be limited by assuming a constant
rod velocity and by considerin, the target to be a single linear
member. 1In addition the results of this chapter are applicable
only when equations (203) or (20C) hold; i.e., only when one of
the cones is completely contained in the cylinder. The latter
restriction is not a serious limitation since the vast majority
of end games satisfy these inequalities.
B. THE‘SIZE OF THE LETHAL VOLUME

From a computational standpoint, the size of the lethal
volume is a very efficient measure of effectiveness. 1In this
section, expressions will be given with which the size of the
lethal volume can be evaluated when both ¥V and V‘ are zero and

y
when either V¥ or ¥ 1is not zero.

y ]

Consider the lethal volume in figure 4. The lethal volume
is composed of segments of length | EE] joining the surfaces of
the two cones. The volume contained in one of the cones is seen
to be interior to the lethal volume while the volume contained in
the other cone is exterior to the lethal volume. Since these cones
are identical in size, the volume contained in each is the same.

The size of the lethal volume can, therefore, be gotten by finding

the volume of the skewed elliptic cylinder obtained by joining the

pp———— - — * . -




31

bases of the two cones. & similar condition is seen to exist
whenever one of the cones is completely contained in the cylinder;
i.e,, whenever equation (20B) or (20C) holds.

The volume of the skewed elliptic cylinder is given by,

where, Venad ‘r‘| e |

a and b are the semimajor and semiminor axes of the
ellipse, L is the vector connecting the center of the
ellipses at the erds of the cylinder. ¢ is the cosine
of the angle between L and the vector perpendicular to
the surface of the ellipse. This fact wiil now be
related to the size of the lethal volume.

Let V denote the lethal volume and‘ v! denote the size of this

lethal volume. When Vy =V, = 0, BC corresponds to the vector L,

llcorreSponds toe, and a = b = RL.. Hence,
R wler?
vl =n|BCH AR (21)

v
j A >_...'__x...!..

b} -;}E{i::?i

When VY and V, are not both zero, the cones revolve about the

subject to,

y'axis. The vector 'q'; , (15E), is, therefore, perpendicular to
the surface of the ellipse. In this case, BC=1L, 8= Ry, and
b= RL/ ; hence,
L LR LN
A AN c - )' c (22)

Subject to, "ﬁﬁllﬁ:'l |'€T;|

1%, T
B, . (200)

——

ITUR] & a
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As an example, consider one of the lethal volumes of the

preceding chapter. For End Game II, equation (20C) holds, and,

bv] = (0.872) = 0825 nRI 1IC1
since, ti'l‘
q L] .B-C- — T
‘.—‘...__.-.._..‘- ! BC ‘ Lg ’ 03 %] .965, 0, 0266] = 0.872‘?:‘ LJ

|q‘IAn important property of the size of the lethal volume can
now be stated:
For all end games where the inequality (20B) or the
inequality (20C) holds, the size of the lecthal velume
for cuts of a single linear structural member is a maximum
when the velocity vectors of the target and the missile
are parallel, (V; - V; = 0 ), and the axis of both the
target and the missile lie along these vectors (‘li | = 1).
Tﬁis follows directly from equations (21) and (22) since
and the maximum value of lli | =2,
THE PROBABILITY CONTENT OF THE LETHAL VOLUME
1. Introduction
An approach similar to that used to calculate the volume |V|
can also be used to find the probability content of V. That is,
the probability content of V can be considered to be equal to the
probability content of an elliptic cylinder plus the probability
content of an elliptic cone less the probability content of an
identical cone. Unfortunately, the probability content of the two

cones are not usually equal; hence, they do not cancel as they did
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in the calculation of V . 1In gcneral, thc probability content
of V, P; , is given by,

P =P +P ~P
k 1 8 3
where,

P is the probubility content of the elliptic cylinder,

P is the probability content of the cone interior to the

lethal volume,

and P; is the probability content of the cone exterior to the

lethal volume.

2. Background

Figure 8 shows a skewed elliptic cylinder and a right elliptic
cone together with a coordinate systenm (t', u', v‘} The coordinate
system is chosen such that the t‘axis lies along the axis of the
conc. The u’and vfaxes are chosen to be parallel to the major and
minor axes, respeciively, of the elliptic base of the cone. In
'addition, the base of the cylinder is assumed to-be parallel to
the u'-v’ planc. The base of the cylinder nearest the origin is
assumed to be centered at the point tb' and the apex of the cone
nearest the origin is assumed tc be located at t1' + Also shown
is the mean (' ,0’ , V') of an arbitrary frequcncy function
f(t', u’, v').

Expressions for the probability content of these two

[ ]
» V)

geometrical figurcs under the frequency function f(t', u
will now be developed. In general the probability content of a
[
volume under the frequency function f(t‘, u, V‘) is given by,
P ”.]. f(¢’, v’y v ‘e’
Vol
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The limits of integration are easier to visualize if the

[

I — —
origin is transformed to the mean (Y, u, v ), so let

tl-t‘-%‘ 3
4 —
u‘u -U. ’
andvev =¥V
The expression for F then becomes
r
P = Jjj f(t, u, v) dtdudv ,
Vol
since the Jacobian of the transformation is one.

First consider the cylinder. The axis of tie cyiinder is

formed by the vector
I"I'[e,c’e]
1 2 3 —_
where,el . ‘z' and 33 are the direction cosines of L with respect
¢ 4 4
to the (t , w, v ) coordinate system. The semi-minor and semi-
major axes of the elliptic cross sectionz of the cylinder are

denoted by a and b respectively. The equation of this cross

section is given by,

[Hit)]a . [V-ngt)]a - 1l.p (23)
vhere, a b

k(t) and h(t) are the u and v coordinates, respectively,
of the center of the cross section taken at the point t,

By similar triangles it is seen that

k(o) = :"- (t' - t ) -1

and that, 1 .
(3 €
k(t) w Rt ak(o)w R (t+F =t =T
1 1
Analogously, €

n(t)--‘f-(t-r'f'-to)-?'
1
Solving equation (23) for v gives,

v(t, u) = n(t) * gJZf_ luk(t) .
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The probability content of the cylinder then can be expressed

?

as, Uu. . u v
11 p 12 o213
Pw I J j f(t, v, v) dtdudv
L L L
11 12 13
where,
=1Tle +t ' -%
11 1 °
' '
% - v ’
g k(t) + 2 ’
% " k(t) - a s
b s 2 2
s " n(t) + E.Jh - [uk(t)]
b ;2 2
and L, = h(t) -2 Ja© = [u-k(t)]

(2L)

A similar approach can be used in deriving the probability

content of the cone. In this case,

k(t) = k(t, - ta) - -y

P -
h(t) = n(to - tl) -y

and are, hence, consteants.

However, a(t) and b(t), the semi-major

and semi-minor axes of the elliptic cross sections of the cones,

vary with t. 1f the height of the cone is designated

'
l t+ (vt - tl)‘

.

Analogously,

pt) =2l (¢7 -t 1.

a(t)
ora(t) =3l (t+t'-t)) .

by ¥ , then
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For the cone, then

. ! b{t) [=2,, ZE
V(t, U) - 3 m ,\a (u) - [U*’J ]
The prcbability content of the cone, F;, then can be expressed

&s

Uﬁl Uzz p 23
pe] T 17 £ty v, v) dtdudy (25)
LA # L L

21 22 23

where,
[ [
- Y + tl + T ’
- ' -
bel t; - t »
-

U22 = au + a(t) ’

I, =3 -akt)
2 & %’8’ i) - lw+d'?
and L =¥ - EE—:-} .Jaz(t,) - (u+u’l .

23
3. An Expression for the Probability Content of the Lethal Volume

The results of the latter derivations, together with the
results of Chapter II, will now be used to derive an expression
for the probability content of the lethal volume.

In Chapter II, the feasibility of generating an orthogonal
coordinat; system xé, yg, Zé with the following properties was
demonstrated:

(a) The x' axis was shown to be parallel to the minor

B
axis of the cones composing the lethal volume.

(b) The yé axf{s was shown to be parallel to the axis of
this cone and is perpendicular to the base of the cone.

'
(¢} The Z, axis was shown to be parallel to the major axis
B

of this ellipse.
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A lcthal volumc is shown in figurc 9, togcther with such a
coordinate system constructed with its origin at thc apex of thce
interior cone. This coordinatc system mects all the requircments
spccified for the (t', u', v') coordinate system.

Recal’ that the height of the cone was shown to be 2% , that
the major axis of the base of thc cone was snown to bc Ry, and that
the minor axis of the base of the cone was shown to bc = A

Furthermore, if the vector BC is rcstricted to be directed in
the positive yﬁ dircction then Lhe vector BT corresponds to the
vector L. This restriction does not limit the applicability of the
derivation in any way since the choice of points B and C and hence
direction of the vector BC is completely arbitrary.

In Chapter III, BC = | EE] L, 1 La), was given relative to
1

2?
the (x, y, z) coordinate system. To be applicable here, BC must be
transformed to the (xé, yé, zé ) system by equations (16A), (16B),

and (16C). The transformed and restri: ted vector BC will be denoted

by BC = lBC‘ (t‘, ﬂa, ‘5 ). Then cl, ca, e3 corresponds to £, L',

, 2? s
and ilrespectively.
Also shown in figure 9, is the location of the mean (xé, yﬁ,
) : ) ’ ’ ’
IB) of the frequency function f(xB » Yp 5 %p ). As before the

origin is translated to the mean by letting,

15ce equation (17}, p. 2C.
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The expressions for the probability content, Fy, of the
cylinder joining the bases of the two cones can now be easiiy
obtained. Note that t,, the nearesc point to the origin of the
cylinder is given by the height of the cone ri Using equation

(22), Py, is given by,
A U
11 13 13
P wJ‘ J I £(t, u, v) dtduav
L L L
where, 11 12 13
11

13

13

k(t)-z—”(t-tﬂ--&-)-za P (26a)
2
'y Ry
and n(t)--z—"-(t.+ya - - %
2

(26B)

The probability content of the cones can be found in a
similar fashion. For the interfor cone, the distance from the
origin of the ( xB', YB” ZB‘ ) system to the apex of the cone,
tII » 18 zero. The probability content of the interior cone, Py,

is given by,

U u U

231 32 a3
P = I I I f(t, u, v) dtdudv
2

L L L

21 22 @3

T e w o
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where,
Uy T~ 7B :
21
U, " %

mam §
2e T 2B T a(t)

— b(t 2 v 2
U;s =-Xp + % Ja (t) - [u+zB [ P

- Xy - %{%} Ja? (t) - [ua--i-.;'}?' ,

23

at) =aly "+l

The form developed for the probability content of the
interior cone is sufficiently general to be used to express the
probsbility content of the exterior cone. For the exterior cone,

the distsnce from the origin Sf the (xh', yB', zB' ) systeam to

the apex of the cone is given by,
t‘-lacua

The quantities k(t) and h(t) are again constsnts with,

e

’ mam § #
K6 nk(TRIL T = 1B -,

’ m

and  n(t) =n(|BIL -x)=IBIL -3 .

The probability content of the exterior cone, P3j, is given

b
o Ua‘ : U33
32
P o= | [ £t 0, v dtaua
N L38 Laa
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RL e L —f
U“-(_a.)+|BC!£= - 75 ,

R I
L BT | y g

]

31

U"nimlla'-?;i-a(t) ’
o ' ‘-u

Laa = | BC Il-a -zp - a(t) 3

—— r —— 2 —
e | BC Izl - Xy +d Ja' (L) - [u+zB | 7 |!-3']2 ,

R AW =t 2 1], == 743
L, | BC 11 Xp d Ja“(t) - [u+zB | 'BC | La ] ’

’

a(t) =d|t-(?a-1'+1'm|t=
Ry,

and  b(t) -glt-(-d-MEElza’,;:g')l ,

- ?E')‘ »

Aftér evaluating the integrals for Py, Py, and P3, the

probability content of lethal volume Py, is given by,

P‘ - P1 + P’ - Pa .
The probability content formulas derived thus far are applicable

only when Vy or V; is not zero and when, in addition, the inequality
(20C) holds.
The equations for the probability content of the lethal volume

when both V., and V, are zero follow in a analogous fashion. In this

y

!

caae, the coordinate system (x, y, z) i5 equivalent to the (t', u,

.

i
v ) system. If the mean of the frequency function f(x, y, 2) ia

(x, y, z), the substitution,

tex-X i
u-y'.i »
and VeZ-2 .

will translate the origin to the mean.

2

Recall that in thia case® the cones are right circular cones with

25ee equation (13), p. 18
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v
heights |vL IRL . Since tlic cones are circular, a(t) equals b(t)
R
and in the cylinder a = b = R,.
Again the wvector BC must be restricted before it will
correspond to thc vector L. If BC is oriented in the direction

of positive x then 8C = ! BC! (Ll, 1

» ts ) corresponds to the

vector L. RC is relative to the (X, ¥, z) coordinate systcm and

4 £ ond ‘scorresponds to €

4? e ¢ and ¢ respectively, Equations
3

1? 2

(24) and (25) then can be used for the probability content of the
lethal volume in this case with,

L =58

F, [ 4 [ . y ] y A 3

€9 € €, IR A respectively

’ Pl -/ S - -— .
t,u,v =x,y, 2 respectively

¢ 1V,
o " Y " A "

ashe RIl

ti’ « 0 (intefior cone)
tI' = | BC "i (exterior cone)

4, Evaluation of the Integrals

A scheme for both hand ev. .uation and computcr evaluation
of the integrals Pj, Py, and P3 will new be discussed., The scape
of this section will be limited to the evaluation of the integrals
with only the trivariate normal frequency, function,

S N N Y
)7b C; 2 o® o} a)

U SN

g o o t . v
t uw ¥

1
The integral for the probability content of the cylinder or

the cones over the trivariate noitmal Aistribution f(t, u, v),




given above, can be expressed as,

Uu v Uu
lpe 2 3

P= I J J“ f(t, u, v) dtdudv
L L 'L

2 3
where,

ll1 and Lx are constants ’
Ua = k(t) + a(t) R

L = k(t) - a(t) ,

b(t) /2,

U, = nt) + gy B (8) - [uw-x(t))®

and L =n(t) - %E%f?(t) - [u-k(t))? .

To evaluate this integral, first make the normalizing

transformation, ,
t = t/b‘

u’ = u/o
L |
'
v = v/o'

Equation (27) becomes,

¥ Uy’ o’ s

1./2 F ’ ’

Pe{ f{(t, u, v ) dtdudv
) IL,IL,IL, yu'y v)

where, ‘
v o- Ul/crt ’
!
I’x " Ll/o‘ ’
U” - k’(t’) " al(tl) ,
L=kt -a'th
/ 14
u ey e B2 UG - a0 ) T
a (t)
l‘ F
L/ nfe)) J2) V)T L)
. a (t)
k‘ - U‘ »
h = nhfo ’
a: = a{cu I
and b =b /o0 ,

44

(27)
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Since this transformation maps ellipses into elliipses and
straight lines into straight lines, the problen is still to
evaluate the integral P over a right elliptic cone and skewed
€lliptic cylinder.

A computer program suitable for the evuluation of P is
readily available for the IBM 7090 computer.? This routine
computes the integral, P, using a Hasting's approximation4 for
the inner integral then sums by n step by siep process.

The integral P, can be evaluated in terms of tabulated
functions only if k’(t’),h'(t‘), are constants and a ' (t) and
b'(t) are equal. Since a'(t') and b'(t')are always different for
the cones when Vy or Vz is not zero, numerical integration must
usually be used to evu.luate the probability content of the cones.
With the cylinder, a(t) and b(t) are always constants and when

efither V, or V, is not zero, equations (26A) and (26B) show that

y
k’(t') and n'(t') are also constants if 2. ! - 21' = 0 . The

corresponding condition for the case when both Vy and V, are zero is

I =l = 0. -
®  When l‘(t'), b'(t;), k’(t') and h'(t')are constants then

3Gittleman, Ruth, Floating Point (n) Variate Prcbability
Integral, IBM SHARE ROUTINE 1384, November 2, 1962,

aﬂastings, Cecil, Jr., Approximation for Digital Computers,
Princeton University Press. 1955, p. 167.
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the integral ! can be written as

, t /2
ﬂ.’; rk'ea’ pnl e P‘; A - (u'-k')a
2 a
1. ' , +H. 2 ] F
Pa (.21;))!2 it b’ 1. e.-%(u +v ) du av
£y
J s v i b’ ;'3 ¢, 43
L Vkma’'Yn' - A" - (k)
a
or
P=anE(a’, b’ k', n) | (284)
where, |
m=ou)-naw’) , (28B)
2 xo it ‘adt'
oL - G)® [° o7 (280)
00
and —

v..-‘
) ’ b' /,a " 1.2
rk+a ph o+ —Ja - (u-k)
a

2 2
o-?;(u' w') auav’
‘' T3
Jyplat "h’--l-’-’-./e,' - (u'-k‘)z
a

fI(X) is the integral of normal distribution function and is

Ba', v, k5" = L

tabulated in riumerous books.

B(a‘, b', k’, h') is the integral of the bivariate normal




47

distribution over an offset ellipse. This function is tabulated

5, 6, 7

in at least thrce pl:oces. The notation was chosen to

conform to that of Mr. Builte.® 1. n. Cadwvll,9 has shown that

a2 2
' ¢ ’
E(a‘, b‘, kl‘ h‘) o - 2a b 5 exp =2 [ h2 . h.2 } (29)

- 2 £ ‘% $ ¥

' L(;‘ +h:)<ﬁ‘ +Q)J a +4 b +h

Mr. Cadwell showed th:t the error from usinz this approximation
4

is less than .002 if a is less than 0.5. He also gives

‘ ‘
approximations which can be used for a less than 1.5 and for &

less than 2.5. However, with comparable accuracy these latter

approximations are rather cumbersome.

5Rodden, J. J. and G. W. Rosenthal, Tables of the Integral of
the Elliptical Bivariate Normal Distribution Over Offset Circles,
Lockheed LMSD - 900619, May 1, 1961.

6DiDonato, A. R. and M. P. Jarnagin, Intcgration of the
General Bivariate Gaussian Distribution Over an Offset Ellipse,
Naval Weapons Laboratory Report NWL 1710, August 11, 1960.

7Builte, A. G., A Building Block Technique for the Statement
and Solutions of the Problems Involving the Rivariate Normal
Distribution, Master's Thesis, School of Engineering, Air University,
August 1962, p. 119, pp. 54-50.

81bid.

9Cadwell, J. H., "An Approximation to the Integral of the
Circular Gaussian Distribution Over an Offset Ellipse", Mathematics
of Computation, January 1964, Vciume 18, No. 85, pp. 106-113.
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In the spccial case where a' = b', the circular coverage

function, p(a', r), of H. H. Germond is applicablc.lo In this
case,
’ i ’ 7 r ! s [ i
E(ay,b,k,h y=E(a,a,k,h)= pla , T)
where, A 2 2

‘ ‘
r =h +k .
An extensivc tabulation of the " function where,

Q(a’y r) =1 - p(a’, 1)
exists and offers the best source of the values of the circular

coveruge function.11
Roger Snow showed that the circular covcrage function,

p(l.',r)can also bc used when a’ 4 b’ if k' = h'"=0.12 1n this

case, ! 1 ¢ v ¢t (30) .
? ¢ ? ’ a+b = a =b
E(a,b,0,0)-0.(8-:13)'?(‘—5—:?"2")"1’[( ? ,a;b)]. 2
If both &"-'- b' and k‘ = n’ = (, then E(a', a', 0, 0)8 lﬂe.%a

i.e., E(a', a', 0,0) is the integral of the well-known Rayleigh

distribution. 1In this case the tables of e'x can be used to

13

evaluate the integral. If the accuracy requirements are not

10Germond, H. H., The Circular Coverage Function, Rand
Corporation RM 330, January 26, 1950.

11H’arcum, J. I., Tables of Q Functions, Rand Corporation
RM 339, January 1950.

12Snow, Roger, Some Characteristics of the Elliptic Gaussian
Distribution. Rand Corpitration RM 2765-PR, September 1961,

13National Bureau of Standards, Tables of the Exponential
Function eX, U. §. Government Printing Office. 1947.
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to be stringcat, special graph paper can be used to evaluate

E(a’, a" 0, 0)‘14

1f k‘(t')and h'(tjor a'(t') and b'(t')are not constants the
integral can be evaluated by the following procedurc:
(1) For a given t'm t" evaluate k'(t")and n’(t”)
or a'(t") and b'(t").
(2) Find E [a'(t"), b'(t”), k', n’) from one of the
references given or from equation (29).

(3) From the normal probabilit tables E}nd
' 1
(e 3 = ()
(4) From the product,
f(t, VE(a , b ',k n")
1 LA T T | ,
This detcrmines a point of the frequency function,p(t ).
(5) Repeating this procedure, with ttvarying between the
’
lower limit L ! and upper limit U , determines the
b 1
entire frequency function.
(6) Numerical integration of this frequency function yields
the probability content P.
5. Example
As an example of the above procedure the probability content
of the lethal volume, will now be computed for a special case of
End Game I. In End Game I if 11-:1, and l. " -ﬁa =0, then an
antiparallel intercept exists. In this case a = b = R; and the
c¢ylinder is right circular. 1If the mcan of the distribution is

assumed to be located at the base of the interior cone. (see figure

10); then, k'- n'-o, and equations (28A) and (30) hold.

lasurke, T. Finley, New Graph Paper for Circular Normal
Distributions, Rand Corporation RM 3292-JR, September 1962,
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To fix the dimensions of the lethal volume, let 18! = Ry, and
v
£ = 4, To ¥ix the distributi let 9 =0 =0 « .
v 3. To iix the distribution, let | BB - RL/3

for the cylinder, then Ullz 3.0 and LI;- 0.0. Equations

{28B) and (28C) then yield,

H

3

1 ¢ =

Al = " 7T dt = 0.&987
(2")5' ‘lo

From equation (30) is obtained

2
E=1-e20) o888
PI = m E = 0.’.&9!10 ]
Next consider the problem of fincing Py. From figure 10

Hence,

the cone exterior to the volume 18 seen to be oriented with its

’
apex location at t. = 41.,5=L . si v iU =
P ocation at t, 5 1 nce ‘/VR = 5y - L51

+ (%) RI/O" = 3.00 -

Following the procedure outlined in the last section, Table 2

cen now be generated.

Table 2, Calculation of Ps K
4, a2 __L =2

Ky a'(t)) 1.0 () 75° P, (t)
1.5 0 0 «12952 c
1.6 0.2 01980 «11092 .00220
1,7 O.ls 07688 .09405 .00723

L L ] L] L ] L ]
3,0 3,0 98887 <0044 3 .00438

K
Where P, (t') -[1 - e"Ha (t )la](r};‘- e'ét' ) .
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Next pa(t.‘)is plotted in figure 11. The are2 uader this

curve is estimated using one of numerous techniques available

3.0 .
N oo
B, = .[1.5 p,(t') at = 00188

yieldiﬁg,

Py caa be found by a similar procedure. From figur: 10 the
cone interior to éhe volume is seen to have its base nearest the
mean of tie distribution. For the interior cone the functioen
a'(t,')mus: be a maximum, (3), at t‘-o md &8 minimum, (C),
at t'-:..l.g. The function pa(t,') is plotted in figure 12. Tten

P -J'o pa(t') dt = 0,285 .

2
<1.5
Now the probability content of the volume is given by

P =P +P ~P =0,7602 .
k 1 2 3
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CHAPTER 4

PARAMETEF VARIATION STUDIES

Using the results of Chapter 3, the variation in the size
and the probability content of the lethal volume with the model
parameters can be invea£igated. In a typical investigation all
except one of the modcl inputs are held constant and the variation
in the measures of effectiveness is expressed as a_function of the
remaining parameters. The values assigned to the inputs held
constant are then changed «nd the variation in the measures of
effectiveness is again exprevsed as & function the remaining
parameter. This process it repeated until the change in the
measure of effectiveness can be reliably predicted for any set
of values assigned to the inputs held constant.

Another way in which the variation in the measures of
effectiveness is sometimes_investigated is the tradeoff study.
For the tradeoff study all except two of the inputs are held
constant. Combinations of these two inputs are then found such
that the measures of effectiveness remain constant. Here, a
popular example is a set of iso-kill probability curves. Having
such curves the analyst can, if he has the cost data, select the
combination of the two variable: which give a satisfactorily high
kill probability for the least cost,

The construction of iso-kill probability curves in this
fashion may be extremely difficult unless the probability of
kill function can be rolved explicitly for the variables of

interest. Since the kill probability function cannot usually be
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solved explicitly, an iterative process must be used. This can
be quife expensive 1f high accuracy is desired.

One way this problem can be surmounted is to compute the
probability of kill as a function of the ratio of two of the model
inputs. If the probability of kill can be computed in this fashion,
then the tradeoffs between two of the inputs can still be noted and
the calculations can still be easily performed.

A study in which the variation of kill probability is expressed
as a function of the ratio of the input variables will not be
illustrated. To obtain the ratios, the trivariate normal frequency
function f(t, u, v) 1s restricted to the spherical normal frequency
function; 1i.e.,

¢ =0 =@ =0 ®
1 L]

The probability content of the lethal volume can now be
computed as a function of the ratio of the maximué opening radius
of the rod, R;, to or as & function of the ratio of the effective
length of the member [BC !, to o,

. Figure‘13 shows the location of the mean of the frequency
function taken, the values assigned for the other inputs, and the
range of the ratios that were investigated.

The results of this investigation are shown in figures 14 and
15. Figure 14 shows the size of the lethal volume normalized with
respect to 0as a function of the ratio RL/b. Figure 15 ahows
the variation in the probability content of the lethal volume
for the same inputs.

The lethal volume model can be similarly used to determine

the vsriation in kill probability with any of the parameters which
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are {nputs to the model. The number of parameters cf the model
can be increased by deriving the relationship between the inputs
and other end game variables. For example, the standard deviation
of frequency distribution can be divided into guidance and timing
errors, Paraﬁeter variation studies can then be conducted with
either the guidance or timing errors. A further division such
as thia increases the resolution of the model, Table 3 lists
some of the model inputs together with ways these inputs mighf
be divided to increase the number of parameter variation studies
possible with the model.

Table 3
Division of the Model Inputs

1. Standard deviation of the frequency distribution
a. Guidance errors
b. Timing errora
¢. Target maneuvers
2. Lethal radius of the rod
a. Warhead weight
b. Warhead size and shape
3. Average rod velocity
a. Warhead weight
b. Warhead sizc and shape
c. Engagement altitude
4., Effective length of target
a. Target shape
b. Target hardness

¢c. Closing velocity
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5. Velocity vector of the missile

a. Range to intercept

b. Angle between the missile's axis and its velocity vector




CHAPTER 5
MODEL IMPROVEMENTS
INTRODUCTION
In this final section, a means of improving the target and
warhead models will be presented. A model improvement is defined
as a more realistic mathematical descriptién of the actual
performance of the hardware during intercept.

The need for model improvements depends on the particular

variables to be investigated, the purpose of the study, the accuracy

required, and the reliability of the inputs to the model. For
example, if the object of a study is to accurately estimate the
kill probability of a system, then a more realistic description
of the target and warhesd would be desirable., On the other hand,
if the object of the study is to roughly estimate the gain in
kill probsbility obtained by improving the guidance accuracy, then
the current model will suffice.
TARGET MODEL IMPROVEMENTS

The lethal volume associated with cuts of a structural member
haa been derived. The lethal volume associated with cuts of a
stick aircraft can now be determined by taking the union of the
lethal volume associated with each of the structural members of )
an aircraft. One of the ways that this may be accompliched is
given below,

Consider the aircraft sketched in figure 16. 1If the point
vhere the wings are attached to the fuselage is selected es the

origin, then the target can be described with four vectors. One
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vector, ﬁ, has a magnitude equal to the length froz 0 to N, and is
directed from 0 to N. Similarly, vectors from ?, §;, and ﬁ; are
defined as the vectors from 0 to T, W;,and W2 respectively.

The total lethal volume Vj, associated with cuts of all

four vectors is then given by, VL = Vﬁ U V& v v, u V“;
1

Figure 17 gives the cross-section of Vy in the xy plane for
an anéiparallel intercept (End Game I with ‘i = ¥}. This approach
ignores the cumulative effects which might occur when more than
one structural member is hit; i{.e., when two members are both
subjected to a sub-lethal effect, their cumulative effect may well
be lethal to the aircraft, The changes of such an occurrence are
remote with a continuous rod warhead.

The major difficulty that arises in making this model improve

ment is in expressing the limits for the integral,

P = JII f(t, u, v) dtudav

L
Ideally the limits of integration could be expressed as functions

of the wing length !W:], the wing angle w, and the roll of the
aircraft. Such a derivation would be an extremely difficult but
certainly a feasible undertaking.

To better estimate the desirability of undertaking the target
model improvement, an estimate of the change in kill probability
due to adding th. wings to the target is needed. If the vector
NT is considered to represent the segment 1 BC' for the single
linear structural member model already developed, then the
consequences of adding the vectors W and 'J;t:o the model can

1
be considered.
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From equation (31) it 1s seen that since

e >
.VL VNTU (Vw U Vw ) 2 VF

the probability content wigh the stick aircraft model will in
general, be greater than that obtained by using the single
member model, In figure 17, éhe cross section of VL - (Vw v Vw )
has been shaded. The probability content of VL -(V.w U VH?)
represents the increase in probability due to the ad;itionaof the
wings. For ; particular end game the probability content of
v - (VH v ) can be bounded in numerous ways, e.g., using
Gaussian‘equal czll probability paper. From this increase in
orobability the analyst can judge the importance of the target
model improvement for his particular application.
WARHEAD MODEL IMPROVEMENTS

. One of the principal assumptions made before the expressions
for the size and probability conteut of the lethal volume are
derived in Section D, was that the rod travels with a constant
welocity. In the sequel, a means of accounting for a vériable
tod velocity and the effects of this model improvement will be
discussed,

If an object is ejected into the atmosphere with high

initial velocity, its velocity will decay rapidly as a function

of the distance traveled. This velocity will approximate the

equation, '
W(R) = V& (32)

where,
V(R) 1s velocity of the rod at the distance R,
V(o) 18 the ejection velocity of the rod,

and K is the decay parameter.
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The parameter K is a function of the drag encountered; hence,
K varies with the ballistics of the rod and with the air demsity.
The parameter K, then will not oaly changé with the characteristics
of the rod, but will also change with the altitude of the burst.
The time required for the rod to trsvel a distapce R is

given by, R
tg J'co V% - K'%To‘,f (Bm'1>
The average velocity of the rod to a distance R, the parameter
VR used in Chapter II, is given by,
VR - é% - KR V!O!
e =l

When Vy = V, =0, equation (13) gives
2 2 3

S(B) =

.73 __ %
2

B r (nvq
Vo -

Where S(B) = 0 is the equation of thenburface associated with cuts

of the point B.

Substituting for Vi gives,

2 2 2
s‘(B) - 'B + yB - xB -
¥ ® x%ﬂw
[-5=]

Following a procedure slmilar to that unsed in Chapter 3,
the lethal volume can be formed by connecting the s;rface defined
by S'(B) = 0 to a similar surface defined by s'(c)-o with
parallel line segments. Then the expressions for the size and

probability content of the lethal volume can be developed following

t‘t':
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the technigues of Chapter 4. Again the major difficulty would be
in expressing the limits of the integration to obtain the
probability content.

Note that since K is greater than zero the surface defined
S'(B)-O contains a larger volume than the surface defined by
S(B) = 0. (See figure 18). Again an estimate of the change in
kill probability due to the model improvement is desired.

1f Pc is the probability content of the surface defined by
S(B) = O (obtained with Vp = vRL) and Pc'is the probability content
of the surface defined by S'(B) = 0 (using equation (32) for Vgl

then the problem is to estimate
¢
Pc - Pc L]

Let the axis of the aurface defined by S'(B) = 0 be divided
into n intervals and let j = 1, 2, -- n, be the coordinate along
the axis at the end of the nth interval. Let R; denote the distance
from the axis to the suriace defined by S'(B) at the point j.

Let the probability content of the cones of radius R; obtained

- th
with Vg VRj be Py. Let Ry be the distance from the }
coordinate to the cone S(B) = 0 and let Py be the probability
content of this cone.

' ’
Note that P = P = P,, Then,
] ]
[ n ’
Pc -Pc-lim ) (P, .-P,) (33)
n—es Jj=l

taking a small n will yield the desired approximation.

A similar procedure will yield Px" P;' and ?3' corresponding
to the probability content of the cones and the cylinder. The same

procedure can also be used when either Vy and V, are not both

zero, Tne analyst can again judge whether or not this model
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improvement is worthwhile.
Incidentally, equation (33) offers an alternate means of
obtaining the probability content with variable rod velocity.
Using equation (33) to obtain a high degree of accuracy would

be rather expensive, however,
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